Daniel Eek and Tommy Gärling

Effects of Joint Outcome, Equality, and Efficiency on Assessments of Social Value Orientations

Number 4 Volume 30 2000
Effects of Joint Outcome, Equality, and Efficiency on Assessments of Social Value Orientations

Daniel Eek and Tommy Gärling
Department of Psychology
University of Göteborg

Eek, D., and Gärling, T. Effects of joint outcome, equality, and efficiency on assessments of social value orientations. Göteborg Psychological Reports, 2000, 30, No. 4. In “decomposed games” used to assess social value orientations, it is assumed that prosocials choose the cooperative alternative because it provides self and the other with the largest joint outcome. However, the cooperative alternative has almost exclusively also provided self and the other with the same outcome (equality). Two experiments were conducted partly to investigate whether joint outcome or equality is prosocials' primary motive, partly to investigate the possible effects of efficiency on assessments of social value orientations. In Experiment 1, 52 psychology undergraduates completed an extended version of the Triple-Dominance Measure of Social Values where an additional fourth alternative distributing largest joint outcome unequally was introduced. The results suggested that prosocials' primary motive is to reach equality and not to maximize joint outcome. This was also suggested by the results of Experiment 2, where 100 psychology undergraduates completed the same task. In addition, it was found that more prosocials maximized joint outcome when considerations for efficiency were evoked.

Keywords: social value orientations, human interdependence, equality, efficiency.

1 Author note: This research was financially supported by grant #94-0012:01 to Tommy Gärling from the Bank of Sweden Tercentenary Foundation. We thank Karin Ankark Webner and Tomas Karlsson for assistance in collecting and processing the data.
Social value orientations are theoretically defined and empirically assessed with respect to how much weight people assign to their own and others' outcomes in resource allocation tasks (e.g., Kuhlman & Marshello, 1975; Messick & McClintock, 1968; Van Lange & Kuhlman, 1994). Thus, it is assumed that when people are asked to distribute something valuable between themselves and another person, their social value orientation makes them attend selectively to different outcomes and distribute the resource accordingly. Although people can have one of many possible social value orientations, a cooperative, competitive, or individualistic type are typically distinguished. Cooperators are individuals who maximize the joint outcome between themselves and others. Competitors maximize the difference between themselves and others (i.e., relative advantage). The individualistic social value orientation is ascribed to people who are only interested in maximizing their own outcome with little or no regard for the outcomes received by others.

Social value orientations may be assessed by different methods (Liebrand & McClintock, 1988). The most common method is to use “decomposed games.” An example of one such game that distinguishes between the three social value orientations, cooperation, competition, and individualism, is the Triple-Dominance Measure of Social Values (TDMSV) (e.g., Kuhlman & Marshello, 1975; Van Lange, Otten, De Bruin, & Joireman, 1997). In this game participants make nine choices between three alternative allocations of points to themselves and another unknown person. The individualistic alternative maximizes the own outcome (e.g., 560 points for oneself and 300 to the other), the cooperative alternative maximizes the joint outcome (e.g., 500 points for oneself and 500 to the other), and the competitive alternative maximizes the own outcome relative to the other's outcome (e.g., 500 points for oneself and 100 to the other). To evoke feelings of interdependence, participants are asked to imagine that the other person makes the same choices so that the total number of points that each obtains is determined by the choices made by both. Participants who in at least six of the nine choice tasks (66.7%) choose the alternative consistent with one of the three social value orientations are classified as belonging to that social value orientation.

Social value orientations are construed in psychological research as an individual-difference variable affecting behavior. Previous research has shown that people with a cooperative social value orientation (prosocials) cooperate more frequently in social dilemmas than do individuals with individualistic or competitive social value orientations (proselfs) (e.g., Allison & Messick, 1990; Kramer, McClintock, & Messick, 1986; Liebrand, 1984; Van Lange & Liebrand, 1989). Extending these results, it has been shown that social value orientations affect helping behavior (McClintock
& Allison, 1989), have an impact on negotiation outcomes and the
cognitive processes involved in negotiation (De Dreu & Boles, 1998; De
Dreu & Van Lange, 1995), have an impact on commuting decisions (Van
Vugt, Meertens, & Van Lange, 1995), and affect willingness to sacrifice in
close relationships (Van Lange, Agnew, Harinck, & Steemers, 1997).

It seems obvious that the TDMSV assesses individualists' and
competitors' motives. However, prosocials may either have a motive to
maximize the joint outcome or to minimize the difference between
outcomes to self and the other. Although some researchers suggest that
prosocials have both these motives (e.g., Van Lange et al., 1997), it is
generally believed that prosocials' primary motive is to maximize the joint
outcome. Yet, in the TDMSV the cooperative alternative that maximizes
the joint outcome also distributes the resource equally between self and
the other. Hence, the measure does not distinguish between the two
motives.

Little efforts have been made to determine which of the motives,
maximizing the joint outcome or minimizing the difference between self
and the other, that underlies prosocials' choice of the cooperative
alternative. However, Van Lange (1999) recently integrated the motives of
equality (minimizing the difference between self and other) and joint
outcome into a model of social value orientations, partly to explain a
phenomenon referred to as behavioral assimilation (i.e., that prosocials
cooperate in multiple game situations and turn to defection when others
defect) (Kelley & Stahelski, 1970). Van Lange noted that defining
prosocials as individuals who only maximize joint outcome is too limited to
explain the basic motivation underlying their behavior. Instead, he
conjectured that prosocials' motives must be understood in terms of both
concerns for equality and joint outcomes. No efforts were however made to
empirically distinguish between the two motives.

This paper reports two experiments aiming at distinguishing
between the equal and joint-outcome motives that may dictate prosocials' choices in the TDMSV. In both experiments a revised version of the
TDMSV was devised so that the two motives could be distinguished. Since
the results of Experiment 1 indicated that maximizing joint outcome may
not be a primary motive for prosocials, an attempt was made in
Experiment 2 to increase its salience by changing the standard
instructions in a way that emphasized efficient resource use.
Experiment 1

A recurrent finding in previous research is that people generally prefer equal distributions of outcomes in interdependence situations (e.g., Allison & Messick, 1990; Messick, 1995; Messick & Schell, 1992). However, no direct evidence suggests that people prefer to maximize the joint outcome between themselves and others. It is nevertheless argued that prosocials' motive is to maximize joint outcomes. The choice in the TDMSV is clearly interdependent. The counter argument is, therefore, that in the TDMSV equal outcomes rather than maximizing joint outcome may be the motive for making the cooperative choice.

Even though Van Lange (1999) argued that prosocials, compared to individualists and competitors, assign a larger positive weight to equality and to maximizing joint outcome, one of these motives can still be more important for prosocials than the other. Thus, the aim of Experiment 1 was to investigate whether the two motives of achieving equal outcomes and maximizing joint outcome are equally important for prosocials, or whether one is more important than the other. A procedure was devised that made possible to classify participants in the three social value orientations, individualistic, competitive, and prosocial. Furthermore, in the latter category the procedure distinguished between those who prefer equal outcomes to maximizing joint outcome (termed equal-outcome-prosocials) or the reverse (termed joint-outcome-prosocials). Since participants rank ordered the alternatives, it was also possible to investigate which alternatives they prefer next to the most preferred that is the basis for classifying them. If equal outcomes and maximizing joint outcome are equally important motives for prosocials, one should expect the same number of equal-outcome-prosocials and joint-outcome-prosocials on the basis of which alternative they rank order first. In addition, one would expect that the joint-outcome alternative would be rank ordered second by the former and the equal-outcomes alternative second by the latter. In contrast, if equality is the more important motive, more participants would rank order the equal-outcome alternative first.

According to the assumptions made in the model of social value orientations (e.g., Van Lange, 1999), those classified as individualists on the basis of their first ranks should be expected to be indifferent between the other remaining alternatives since they yield the same outcome to oneself. In other words, individualists' motive is to maximize own outcome irrespective of the outcome received by the other. Finally, those who are classified as competitors should be expected to rank order the remaining
alternatives according to their motive (i.e., so that their relative advantage is maximized).

Method

Participants. Fifty-two psychology undergraduates (44 women with a mean age of 30.0 years and 8 men with a mean age of 29.1 years)\(^2\) served as participants.

Procedure. Students attending classes were asked to volunteer to participate without any payment. They were guaranteed anonymity. Those who agreed to participate completed a questionnaire immediately after class. They were monitored by a male experimenter. A session lasted for approximately 10 minutes, after which participants were debriefed.

The questionnaire consisted of an extended version of the Triple-Dominance Measure of Social Values (e.g., Kuhlman & Marshello, 1975; Van Lange et al., 1997). In this extended version (see Appendix), standard instructions were given indicating that the numbers to be distributed represented valuable points, and that the other person was someone they had never knowingly met and did not expect to meet in the future. The extension consisted of increasing the number of choices from 9 to 12 and adding a fourth alternative in each choice. The added alternative maximized joint outcome for an unequal distribution between self and the other. An example is:

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Own outcome</td>
<td>560</td>
<td>500</td>
<td>500</td>
<td>500</td>
</tr>
<tr>
<td>Other's outcome</td>
<td>300</td>
<td>100</td>
<td>500</td>
<td>800</td>
</tr>
</tbody>
</table>

Alternatives A, B, and C do not differ from the original TDMSV. A is the individualistic alternative, B the competitive alternative, and C the cooperative alternative. Whereas both receive an equal number of points in C, in the new alternative D the joint outcome is maximized.

Instead of choosing one alternative each time, participants were instructed to rank order the attractiveness of the four alternatives A, B, C, and D. They received the following instructions (translated from the Swedish): "...Indicate 1 below the alternative that you find most attractive

\(^2\) The unequal balance of sex is not a problem since no reliable sex differences were found.
and therefore would choose first, 2 below the alternative that you find second most attractive and therefore would choose second, 3 below the alternative that you find third most attractive and therefore would choose third, and 4 below the alternative that you find least attractive and therefore would choose last...”.

Classification of social value orientations. A participant was classified as belonging to one social value orientation if he or she ranked the attractiveness of one of the four alternatives consistently in at least 8 of the 12 choices (66.7%). Thus, in the extended version of the TDMSV, it is possible to identify the four social value orientations individualistic, competitive, equal-outcome-prosocial, and joint-outcome-prosocial.

Results and Discussion

Four participants did not rank the attractiveness in such a consistent way that they could be classified. They were therefore excluded from the following data analyses.

Figure 1 displays the frequencies of the remaining 48 participants’ social value orientations. As may be seen, on the basis of their first ranks, 19 were classified as equal-outcome-prosocials because they rank ordered the equal-outcome alternatives first at least 8 times, 21 as individualists because they rank ordered the individualistic alternative first at least 8 times, and 8 as competitors because they rank ordered the competitive alternatives first at least 8 times. Since no participant was classified as joint-outcome-prosocial, the results strongly suggest that prosocials’ primary motive assessed by the TDMSV is to achieve equal outcomes rather than to maximize joint outcome.

It was hypothesized that participants classified as equal-outcome-prosocials would be classified as joint-outcome-prosocials on the basis of their second ranks. A \(\chi^2 \)-test revealed that the number of equal-outcome-prosocials significantly differed across the remaining three alternatives in the second ranks, \(\chi^2(2, n = 19) = 19.06, p < .001 \). However, contrary to the prediction, more participants were classified as individualists (15) than joint-outcome-prosocials (4) or competitors (0). Maximizing the joint outcome may thus not even be a secondary motive. In fact, the joint-outcome alternative was ranked as the third most attractive alternative by 5 prosocials and as the least attractive by more than half (10).
As further hypothesized, the 21 individualists' second ranks did not differ, $\chi^2(2, n = 21) = 1.66$, ns. Eight were classified as equal-outcome-prosicals, 9 as joint-outcome-prosicals, and 4 as competitors. Thirteen ranked as third the equal-outcome alternatives, 6 the competitive alternatives, and 2 the joint-outcome alternatives.

It was also expected that competitors would rank the remaining alternatives in order of relative advantages. In agreement with this, all of them ranked ordered the individualistic alternatives as the second most attractive and the equal-outcome-prosocial alternatives as the third most attractive. A Kolmogorov-Smirnov3 test showed that the differences between the alternatives were significant, $D(8) = 0.66, p < .01$.

In sum, the results showed that prosocials' primary motive in the TDMSV is to achieve equal outcomes rather than to maximize joint outcome. Furthermore, inconsistent with some recent theorizing about social value orientations (Van Lange, 1999), prosocials' secondary motive appears to be to maximize their own outcome rather than the joint

3Used instead of χ^2 since the expected frequencies in the cells were less than 5.
outcome. In contrast, the pattern of results obtained for individualists and competitors fits well with what is expected from the suggestions made by Van Lange (1999) and others (e.g., Kuhlman & Marshello, 1975; Messick & McClintock, 1968; Van Lange & Kuhlman, 1994). Thus, individualists' motive appears to be solely to maximize their own outcome, competitors' motive solely to maximize their own outcome relatively to the outcome received by the other.

Experiment 2

Despite the attractiveness of equality, it has been shown that people are willing to distribute a resource according to other principles than equality if additional information is provided, for instance, information about asymmetry with regard to ability to cooperate or interest in cooperation (e.g., Eek, Biel, & Gärling, 1998, in press; Van Dijk & Wilke, 1993; Van Dijk & Grodzka, 1992). Another reason may be that people believe that the resource is used in an inefficient way (e.g., Wilke, 1991). Experiment 2 investigated the possibility that prosocials' primary motive shifts from achieving equal outcomes to maximizing joint outcome if the former leads to inefficient resource utilization. In contrast, according to the model of social value orientations (Van Lange, 1999), individualists and competitors were not expected to be affected by such information.

In Experiment 2 participants made choices among the four alternatives in the extended TDMSV. Replicating the results of Experiment 1, more participants were expected to be classified as equal-outcome-prosocials than joint-outcome-prosocials. However, the reverse was expected when the instructions emphasized that the points will be destroyed if they are not allocated, implying inefficient resource utilization. No effect of the changed instructions was expected for those classified as individualists or competitors.

Method

Participants. Another 100 undergraduates of psychology (60 women with a mean age of 29.0 years and 40 men with a mean age of 30.1 years) served as participants. They were randomly assigned to one of two groups with 30 women and 20 men in each.
Procedure. The procedure was essentially the same as in Experiment 1. Hence, after class the two groups were given the extended version of the TDMSV. Instead of rank ordering the attractiveness of the four alternatives, participants were however asked each time to choose the most attractive alternative.

Both groups of participants received the standard instructions in the questionnaire. In one of the groups participants received additional instructions informing them that in each task there were 1500 points to distribute, and that points not distributed would be destroyed.

Results and Discussion

One participant who did not complete the questionnaire properly was discarded. In Table 1 the classification of the remaining participants in each of the groups is displayed. As may be seen, 5 and 10, respectively, were not possible to classify. Furthermore, none and 2 were classified as competitors. The numbers classified as individualists were almost the same (12 and 11). Consistent with the hypothesis, the efficiency instructions decreased the number of participants classified as equal-outcome-prosocials from 22 to 9 whereas the number classified as joint-outcome-prosocials increased from 11 to 17. The difference in distribution was significant, \(\chi^2(4, N = 99) = 10.44, p < .05\). To determine what accounted for the significant difference, the contingency table was partitioned into four independent 2 by 2 subtables, one for each degree of freedom. Four separate \(\chi^2\)-tests were performed to analyze each of these. They revealed that only the difference in the number of equal-outcome-prosocials and joint-outcome-prosocials was significant, \(\chi^2(1, n = 99) = 5.91, p < .05\).

4 The procedure used in Experiment 1 made it difficult to use instructions that emphasized interdependence. An additional aim of Experiment 2 was therefore to investigate whether or not interdependence instructions affect participants' choices in the TDMSV. Thus, half of the participants in each group received the standard interdependence instructions ("imagine that the other person also makes the same choices and that the outcome is jointly determined by the choices made by both"), whereas the other half of the participants did not receive these instructions. The results showed that interdependence instructions did not have any significant effects on participants' choices.
Table 1
Absolute and Relative Frequencies of Social Value Orientations Related to Standard vs. Efficiency Instructions

<table>
<thead>
<tr>
<th>Social value orientation</th>
<th>Standard instructions</th>
<th>Efficiency instructions</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>f</td>
<td>%</td>
</tr>
<tr>
<td>Equal-outcome-prosocials</td>
<td>22</td>
<td>44.0</td>
</tr>
<tr>
<td>Joint-outcome-prosocials</td>
<td>11</td>
<td>22.0</td>
</tr>
<tr>
<td>Individualists</td>
<td>12</td>
<td>24.0</td>
</tr>
<tr>
<td>Competitors</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Not classified</td>
<td>5</td>
<td>10.0</td>
</tr>
</tbody>
</table>

General Discussion

According to the model of social value orientations (e.g., Van Lange, 1999) implying that prosocials' primary motive is to maximize joint outcome, no participants in the present experiments would choose the equal-outcome alternative. Instead, roughly about 45% of the participants being classified according to any of the social value orientations would choose the alternatives that maximize the joint outcome, 35% the alternatives that maximize the own outcome, and the remaining 20% the alternatives that maximize own advantage relative to the other. Although the proportion cooperators, individualists, and competitors, respectively, to some extent varies from study to study due to, for instance, cultural differences (e.g., in Sweden the proportion competitors is low and the proportion cooperators high, e.g., Gärling, 1998), they have been shown to be rather stable across different studies (e.g., Van Lange & Kuhlman, 1994; Van Lange et al., 1997). Yet, since the measure used in the majority of studies fails to distinguish between prosocials' motives to achieve equal outcomes or to maximize joint outcome, the relative stability of the results does not rule out that the former is the primary motive rather than the latter. The extended TDMSV devised in the present study is to our knowledge the only attempt to distinguish between the different motives.

In line with the alternative hypothesis based on numerous studies indicating the importance of equality in interdependence situations (e.g., Allison & Messick, 1990; Messick, 1995), significantly more cooperators
were in the present study classified as equal-outcome-prosocials than joint-outcome-prosocials. This was shown in Experiment 1 where no participant rank ordered the joint-outcome alternative as the most attractive one. Also in Experiment 2 fewer participants were classified as joint-outcome-prosocials than equal-outcome-prosocials when standard instructions were given. It is therefore argued that the primary prosocial motive in decomposed games such as the TDMSV is to achieve equal outcomes, not to maximize joint outcome. Surprisingly, the latter alternative was not even the secondary motive for prosocials. Instead, to maximize own outcome was preferred. This appears to contradict the hypothesis based on the arguments by Van Lange (1999) that prosocials are motivated to maximize joint outcomes and to achieve equal outcomes.

The results of Experiment 2 fit somewhat better with the suggestions made by Van Lange (1999). Still, in line with the results of Experiment 1, an equal distribution was preferred to a distribution that maximized joint outcome when standard instructions were given. However, when the instructions made efficient resource utilization salient, more cooperators were classified as joint-outcome-prosocials than equal-outcome-prosocials. Thus, to make prosocials pay attention to maximizing joint outcome, something must be added that rationalizes such a motive. Experiment 2 showed that one such factor is considerations for efficiency. Future research should try to identify other factors that promote a shift in motives to maximize joint outcome.

The results of Experiments 1 and 2 suggest that the prosocials' motive is more complex than are individualists' and competitors' motives. In Experiment 1, the observed rank orders for individualists and competitors, respectively, were predicted by the assumption that they have a single motive. Thus, individualists were predicted to be indifferent in their second choice since all the remaining alternatives provided them with the same outcome. Similarly, competitors were predicted to rank order the individualistic alternative second and the equal alternative third. The results confirmed these predictions. Also as predicted, the numbers of individualists and competitors were not affected by the efficiency instructions in Experiment 2.

An alternative interpretation of the present results is that prosocials and competitors are similar to each other in that they both are concerned with the other's outcome while this is ignored by individualists. Prosocials differ from competitors in that a smaller rather than a larger difference between their own and the other's outcome is preferred. However, both are aversive towards a higher outcome to the other. Prosocials, competitors, and individualists alike prefer a higher to a smaller outcome to themselves. This is illustrated in Figure 2 for prosocials and
competitors. Consistent with the alternative explanation, in Experiment 1 prosocials and competitors ranked the joint-outcome alternatives (in which the other receives more) much lower than did individualists. Thus, both preferred a higher own outcome to a higher outcome to the other.

Preference

![Preference graph]

Figure 2. Prosocials' and Competitors' Hypothetical Preferences for own and Other Outcomes.

In summary, the present experiments provide evidence for that a distribution according to equality is what prosocials strive to obtain, not to maximize joint outcome. However, in line with previous research on social dilemmas indicating that considerations for an efficient utilization of a resource motivate people to cooperation (e.g., Wilke, 1991), prosocials' motive shifts to maximizing joint outcome when considerations for efficiency are evoked. Individualists and competitors are not affected.

We propose that the extended TDMSV be used without efficiency instructions in future research aiming at assessments of social value orientations. In this way the research may clarify whether equal-outcome-prosocials are particularly frequent in Sweden, a society where socialization endorses equality to an unusually high degree, or whether it is a more general phenomenon. If the latter turns out to be the case, some revision of the conceptualization of social value orientations seems to be called for. The extended TDMSV can be used for exactly the same purpose as the standard measure, that is, to classify individuals in proselves (or individualists and competitors) and prosocials, but it offers the additional possibility of distinguishing between prosocials with partly different
motives. The latter may also increase the ability of the measure to predict choices in other interdependence situations, such as social dilemmas.

References

Appendix

The Extended Triple-Dominance Measure of Social Values

<table>
<thead>
<tr>
<th>(1) Your outcome</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>The other's outcome</td>
<td>520</td>
<td>460</td>
<td>460</td>
<td>460</td>
</tr>
<tr>
<td></td>
<td>280</td>
<td>460</td>
<td>60</td>
<td>760</td>
</tr>
<tr>
<td>(2) Your outcome</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
</tr>
<tr>
<td>The other's outcome</td>
<td>470</td>
<td>470</td>
<td>470</td>
<td>530</td>
</tr>
<tr>
<td></td>
<td>470</td>
<td>770</td>
<td>70</td>
<td>270</td>
</tr>
<tr>
<td>(3) Your outcome</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
</tr>
<tr>
<td>The other's outcome</td>
<td>520</td>
<td>520</td>
<td>520</td>
<td>580</td>
</tr>
<tr>
<td></td>
<td>120</td>
<td>820</td>
<td>520</td>
<td>320</td>
</tr>
<tr>
<td>(4) Your outcome</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
</tr>
<tr>
<td>The other's outcome</td>
<td>550</td>
<td>610</td>
<td>550</td>
<td>550</td>
</tr>
<tr>
<td></td>
<td>550</td>
<td>350</td>
<td>150</td>
<td>850</td>
</tr>
<tr>
<td>(5) Your outcome</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
</tr>
<tr>
<td>The other's outcome</td>
<td>540</td>
<td>600</td>
<td>540</td>
<td>540</td>
</tr>
<tr>
<td></td>
<td>840</td>
<td>340</td>
<td>540</td>
<td>140</td>
</tr>
<tr>
<td>(6) Your outcome</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
</tr>
<tr>
<td>The other's outcome</td>
<td>540</td>
<td>480</td>
<td>480</td>
<td>480</td>
</tr>
<tr>
<td></td>
<td>280</td>
<td>490</td>
<td>790</td>
<td>89</td>
</tr>
<tr>
<td>(7) Your outcome</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
</tr>
<tr>
<td>The other's outcome</td>
<td>620</td>
<td>560</td>
<td>560</td>
<td>560</td>
</tr>
<tr>
<td></td>
<td>360</td>
<td>160</td>
<td>860</td>
<td>560</td>
</tr>
<tr>
<td>(8) Your outcome</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
</tr>
<tr>
<td>The other's outcome</td>
<td>510</td>
<td>510</td>
<td>570</td>
<td>510</td>
</tr>
<tr>
<td></td>
<td>810</td>
<td>510</td>
<td>310</td>
<td>110</td>
</tr>
<tr>
<td>(9) Your outcome</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
</tr>
<tr>
<td>The other's outcome</td>
<td>490</td>
<td>490</td>
<td>550</td>
<td>490</td>
</tr>
<tr>
<td></td>
<td>490</td>
<td>90</td>
<td>290</td>
<td>790</td>
</tr>
<tr>
<td>(10) Your outcome</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
</tr>
<tr>
<td>The other's outcome</td>
<td>450</td>
<td>450</td>
<td>510</td>
<td>450</td>
</tr>
<tr>
<td></td>
<td>750</td>
<td>50</td>
<td>250</td>
<td>450</td>
</tr>
<tr>
<td>(11) Your outcome</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
</tr>
<tr>
<td>The other's outcome</td>
<td>500</td>
<td>560</td>
<td>560</td>
<td>560</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>300</td>
<td>500</td>
<td>500</td>
</tr>
<tr>
<td>(12) Your outcome</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
</tr>
<tr>
<td>The other's outcome</td>
<td>530</td>
<td>530</td>
<td>530</td>
<td>590</td>
</tr>
<tr>
<td></td>
<td>130</td>
<td>830</td>
<td>530</td>
<td>330</td>
</tr>
</tbody>
</table>